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The detailed processes involved in spiral wave breakup, believed to be one major mechanism by which
tachycardia evolves into fibrillation, are still poorly understood. This has rendered difficult the proper design of
an efficient and practical control stimulus protocol to eliminate such events. In order to gain new insights into
the underlying electrophysiological and dynamical mechanisms of breakup, we applied linear perturbation
theory to a steadily rotating spiral wave in two spatial dimensions. The tissue was composed of cells modeled
using the Fenton-Karma equations whose parameters were chosen to emphasize alternans as a primary mecha-
nism for breakup. Along with one meandering mode, not just one but several unstable alternans modes were
found with differing growth rates, frequencies, and spatial structures. As the conductance of the fast inward
current was increased, the instability of the modes increased, consistent with increased meandering and pro-
pensity for spiral breakup in simulations. We also explored a promising new approach, based on the theory, for
the design of an energy efficient electrical stimulus protocol to control spiral wave breakup. The novelty lies in
addressing the problem directly at the ion channel level and taking advantage of the inherent two dimensional
nature of the rotating wave. With the help of the eigenmode method, we were able to calculate the exact timing
and amplitude of the stimulus, and locate it optimally to maximize efficiency. The analysis led to a special-case
example that demonstrated that a single, properly timed stimulus can have a global effect, suppressing all
growing alternans modes over the entire tissue, thus inhibiting spiral wave breakup.
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I. INTRODUCTION

Ventricular fibrillation remains one of the leading imme-
diate causes of sudden cardiac death in North America[1].
Yet, despite extensive research, its nature as well as the elec-
trophysiological mechanisms responsible for its initiation
and sustenance are still not fully understood. In the structur-
ally normal heart, recent experimental and theoretical re-
search suggest that the breakup of a single stationary or me-
andering spiral or scroll wave into multiple reentrant waves
may be one of the major mechanisms underlying fibrillation
[2–5]. However, the conditions during which breakup occurs
are still the source of much debate[6–10]. In particular,
mechanisms involving alternans(i.e., beat-to-beat alternation
in action potential duration) as an important cause of
breakup, are still the subject of much research and discussion
[8–15].

A number of approaches have been taken in the investi-
gation of spiral wave dynamics and wave breakup. One ap-
proach consists of direct computer simulation of the partial
differential equations (PDEs) governing the dynamics
[2,11,16–25]. The analysis performed often reveals how the
dynamics are modified when certain properties of the cells
and/or tissue(such as gap junction, sodium and/or calcium
channel conductances, etc.) are varied. However, the conclu-

sions drawn when using this approach alone have been
somewhat limited because of the complex and interrelated
phenomena typically present in spiral waves. To overcome
this difficulty, researchers have often employed simplified
models of arrhythmia(e.g., pulse propagation in a ring, low
dimensional maps) [2,19,26–29], and/or simplified dynami-
cal cell models[2,3,21,30–34], or supported their studies
with concepts or analytical expressions derived from these
types of models[16,18,21,22,35]. The use of these simplified
models has helped greatly to advance our understanding of
spiral wave dynamics, but they often present some limita-
tions. Some fail to capture mechanisms of reentry that are
inherently two-dimensional in nature(e.g., dynamics of the
spiral core, wavefront curvature and fundamentally two-
dimensional aspects of electrotonic interaction and conduc-
tion velocity dispersion), which, as we hypothesize and some
studies have already suggested[9,11,16,18,19,21,36], often
play an essential role in the wave dynamics and its stability.
Also, the models sometimes do not include some of the de-
tailed electrophysiological and often interrelated processes
present in spiral wave dynamics(alternans, memory, ionic
mechanisms, etc.).

The application of linear perturbation theory to the system
equations is another avenue taken by investigators to study
spiral wave stability. This approach sidesteps some of the
limitations just discussed. A nice property of this method lies
in its ability to separate out various phenomena(alternans,
meandering, memory, etc.) allowing one to analyze each in-
dependently and characterize stability through the use of so-
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called “eigenmodes.” The method has already been used to
study the stability of a steady rotating spiral wave in two
dimensions (2D) or a vortex in three dimensions(3D)
[37–41]. Its implementation is, however, computationally in-
tensive and consequently has only been applied to the
FitzHugh-Nagumo(FN) equations, a relatively simple model
that generally does not produce spiral wave breakup. The
analysis was thus limited to a study of the meandering of
spiral waves in 2D or filament twist in 3D.

The ultimate goal of studying spiral wave dynamics using
these methods is to find an efficient method to prevent, sup-
press or control arrhythmia, and reestablish normal cardiac
activity. If alternans is indeed a major player in the transition
from ventricular tachycardia to ventricular fibrillation
[6,12,15,18,21,27,42–44], then one step towards this goal
would be to find ways to suppress or control alternans. This
might be accomplished by formulating drug therapies that
modify ionic currents and thereby alter the overall dynamics
of the tissue. However, our lack of understanding of the com-
plex dynamics of arrhythmia has led to catastrophic results in
early drug trials(CAST and SWORD[45–47]). Electrical
stimulation protocols have also been explored as an approach
for the control of alternans, both at the cellular level and in
2D [48–52]. One type of protocol applied to single cells and
one-dimensional(1D) cables adjusts the pacing interval to
suppress alternans[51,53,54]. However, this approach seems
to be difficult to extend to the case of reentry, where control
cannot easily be exerted on the “pacing interval.” A different
approach was used by Rappelet al. [49]. Their control
scheme applied a feedback current to a discrete set of points
during repolarization, thereby controlling alternans at each
point. Overdrive pacing has also been shown to control spiral
wave chaos under certain conditions[55,56].

A number of methods for completely suppressing reen-
trant patterns using electrical stimuli have also been sug-
gested[56–64]. These include displacing the reentrant wave
towards a boundary where it will self-extinguish[58,63,64],
applying suitable stimuli in the recovery phase to generate a
new wavefront which would collide with and suppress the
original reentrant wave[57,59,65], using pulse modulation to
force the tissue to resume its normal rhythm[60], and simu-
lating no flux boundary conditions inside the tissue using
lines of stimuli, where reentry would then vanish[62,66].

Recently in our group, we have also applied linear pertur-
bation theory to the twin goals of identifying the physiologi-
cal basis for, and controlling, alternans in rapidly paced, iso-
lated cardiac cells. A distinction relative to many of the other
studies, is that we have applied the method directly to the ion
channel equations. This helped us reveal the ionic process
responsible for alternans[34,67] and led to the development
of new, ion-channel based strategies for the electrical control
of alternans in single cells[68].

Encouraged by these results, we now propose to again
apply the eigenmode method at the ion channel level, this
time in two spatial dimensions, to gain new insights into
spiral wave dynamics, and in particular alternans, and to
present a new approach for controlling spiral wave breakup.
In this study, we used the three variable Fenton-Karma
model (referred to as the three variable simplified ionic
model or 3V-SIM) [21,22] as a first step towards the use of
more detailed ionic models.

Our approach offers several advantages and improve-
ments over other previously described studies:(1) The
method is able to isolate, analyze independently and charac-
terize the stability of the multiple and intricate phenomena
involved in spiral wave dynamics, especially close to the
spiral tip, where meandering is often combined with altern-
ans.(2) In contrast to the FitzHugh-Nagumo model, the use
of 3V-SIM includes the three basic ionic currents, which will
allow the study of alternans and provide a basis for forming
simple, but physiological, explanations of processes involved
in spiral wave instability.(3) Since the method is applied to
study stability in 2D rather than pulse propagation in 1D or
constant pacing in a single cell, we will be able to look at
mechanisms of reentry that are inherently two-dimensional.
(4) The method automatically provides stimulus sensitivity
information through the examination of left eigenvectors.
This allows objective determination of the optimal locations
and timing ofthe control stimuli for maximum efficiency.(5)
The method’s ability to embrace the global dynamics of the
spiral wave and directly investigate the precise electrophysi-
ological mechanisms of its instability will help in the design
of smart and efficient protocols to target and control specific
modes, a difficult task if phenomenological concepts such as
those based on low dimensional maps and variable sets are
used. These advantages must be balanced against inherent
limitations of the method, which will be discussed in detail
in the discussion section.

The purpose of this paper is therefore several fold:(1) To
introduce the method,(2) to extract and describe spiral wave
alternans mechanisms for a simple ion channel model,(3) to
present a new approach for the control of alternans using
knowledge obtained from perturbation theory, and(4) to
demonstrate the potential of the method to develop control
strategies for spiral wave instabilities. We first present linear
perturbation theory as it applies to our problem, and describe
how the method is implemented numerically. We then exhibit
the various modes obtained, in particular the alternans
modes, and describe briefly their characteristics. Finally, we
demonstrate how perturbation theory can help design an ef-
ficient stimulus which, despite being very localized, can con-
trol meandering and alternans over the entire tissue, thus
inhibiting breakup of the spiral wave in the nonlinear regime.

II. STUDY OF SPIRAL WAVE STABILITY

We will study the propensity for rotating action potential
waves to break up by assuming that the breakup phenom-
enon is related to the instability of a steadily rotating action
potential wave. That is, if a test were conducted in which a
rigidly rotating wave is initiated in cardiac tissue, and this
wave were unstable to small perturbations, leading to a pro-
gressively more and more unsteady rotating pattern and
breakup, then we would expect that, more generally, arbi-
trary rotating wave patterns in the same medium would also
be susceptible to breakup. With this assumption, we confine
our study to the consideration of the stability of a single,
rigidly rotating wave.

A. The method

1. The dynamical system

The system we will use will be two-dimensional and cir-
cular in geometry. The idea will be to first calculate a
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steadily rotating wave solution in this system, with the center
of rotation coinciding with the center of the system, and then
study the stability of these solutions using linear perturbation
theory.

The dynamics of this circular system will be governed by
the equations of the three-variable Fenton-Karma model(3V-
SIM) [22]:

]tu = D · s¹2ud +Fsud s1d

whereusx,y,td is the vectorfusx,y,td ,vsx,y,td ,wsx,y,tdgT

which includes the membrane potentialu, inactivation gatev
of the fast inward current(sodium current) and inactivation
gatew of the slow inward current(calcium current), respec-
tively. Here theT superscript designates the transpose.D is
equal to:

D = 3D 0 0

0 0 0

0 0 0
4 s2d

where D is the diffusion tensor as determined by the gap
junction conductivities between cells, andF is the vector
function fFu,Fv ,FwgT, the component functions which de-
fine the local(i.e., isolated) cell behaviors foru, v, andw,
respectively, as described in Appendix A.

This model was chosen mainly for its simplicity due to
the intensive computing involved with our method, and for
its ability to produce spiral wave breakup. Despite its sim-
plicity, the model has been shown to accurately reproduce
key aspects of the dynamics of other more detailed and ad-
vanced ionic models such as the Beeler-Reuter, Luo-Rudy-I
or Courtemancheet al. models [21,22] with appropriately
chosen parameters.

The 3V-SIM parameters were chosen to reduce the rate of
rise of the upstroke to about 30 V/s compared to the normal
value of about 200 V/s, assuming an AP amplitude of
100 mV. This was accomplished by reducing the fast inward
conductancegfi while simultaneously decreasing the gap
junction resistance to keep the propagation velocity similar
to that of healthy tissue.(See Appendix A for parameter
values and definitions.) This was done for two reasons. First,
we were principally interested in studying alternans as a
cause of spiral breakup; thus the parameters were chosen to
limit the meandering instabilities relative to instabilities as-
sociated with alternans. Second, it was necessary to have
“smoother” functions to facilitate the convergence of the
Newton-Raphson method, which was used to find the steady
state (as described later in this section). To ensure proper
convergence, we also modified the model’s equations to
make them second order differentiable. The new set of equa-
tions is described in Appendix A.

Computer simulations of spiral waves were performed to
verify the appropriateness of our choice of system param-
eters. Simulations were conducted in polar geometry with a
system radius of 3 cm. We used 100 computational nodes in
the radial direction and 600 in the azimuthal direction.

The integration of the equations forwards in time was
performed using the standard forward Euler(FE) method for
the local dynamics terms and any terms involving radial de-

rivatives. The Crank Nicholson method was employed for
any terms involving azimuthal derivatives to avoid the strin-
gent stability timestep limit imposed on the FE(on the order
of 10−4 ms) arising from the very small azimuthal grid spac-
ing at the very center of the polar grid. Solution to the equa-
tions was then facilitated by using a standard FFT with re-
spect to the azimuthal coordinate,u. The parameter values of
the 3V-SIM model were those listed in Appendix A. The
timestep was generally chosen to be 0.01 ms.(This is much
smaller than the fastest timescale which is approximately
equal totd<0.3–0.6 ms; see Appendix A for definition.)

2. Linear perturbation theory

When a rigidly rotating wave is unstable, linear perturba-
tions (i.e., small changes in membrane voltage or the other
dynamical quantities) will typically grow, often leading to
spiral wave breakup in the nonlinear(i.e., large-amplitude)
regime. When small, these perturbations can be regarded as
the sum of a number of independent components, called
eigenmodes, each of which is associated with a distinct type
of behavior, such as spiral wave meandering or alternans.
Eigenmode theory, which is derived from linear perturbation
theory, allows the extraction and study of the growth and
nature of each of those modes independently.

The first step of the method consists of finding a rigidly
rotating spiral wave solution to the governing equations,
which we refer to as the “steady state.” Mathematically, this
can be achieved by looking for a nontrivial steady state so-
lution to Eq. (1) in the frame of reference rotating at the
same angular frequencyV as the spiral wave. The natural
coordinate system to use with this method for our system is
polar coordinatessr ,ud where r is the radius distance from
the center of rotation andu the azimuthal angle. Transforma-
tion to the rotating frame consists of making the following
change of variables:r → r, u→u−Vt and t→ t. This trans-
formation results in the addition of an advection term of the
form V]uu to Eq. (1); that is,

]tu =Gsud s3d

where

Gsud ; V]uu + D · s¹2ud +Fsud. s4d

A rigidly rotating wave is stationary in this frame, implying
that the time derivatives must be zero. The steady state so-
lution u0sr ,ud must, therefore, satisfy:

Gsu0d = 0. s5d

Once the steady state is obtained, we can determine the
dynamics governing small perturbationsdu around the
steady state by expanding Eq.(3) to first-order:

]tdu =D„Gsu0d…du s6d

whereD is the Jacobian with respect tou, v, andw. In other
words:
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DsGsu0dd = V]u + D¹2

+ 1]uFusu0d ]vFusu0d ]wFusu0d

]uFvsu0d ]vFvsu0d 0

]uFwsu0d 0 ]wFwsu0d
2 . s7d

We study the dynamics of the perturbationsdu as ex-
pressed in Eq.(6) by finding the eigenmodes of the system.
Each eigenmodeasr ,ud and its eigenvaluel satisfy the dy-
namical equation:

D„Gsu0d…a = la s8d

so that, if the initial perturbationdu has the form,
dusr ,u ,0d=asr ,ud, thendu satisfying Eq.(6) is forever pro-
portional to the eigenmode:

dusr,u,td = asr,udelt. s9d

Each mode is, therefore, characterized by its eigenvector
and eigenvalue. The eigenvector gives the spatial structure of
the perturbation for the membrane potential and the other
variables as we shall see in Sec. II B. The eigenvalue is a
complex number containing the growth rate and frequency of
the mode. As suggested by Eq.(9), the real part of the eigen-
value s;lRd is the growth rate, indicating how fast the per-
turbation associated with the mode grows(positive value) or
decays(negative value). The imaginary part of the eigen-
valueslId is the mode frequency, which gives the oscillation
frequency of the mode. For instance, the alternans modes
have mode frequencies very close to half the spiral wave
rotation frequency, which implies that the width oscillation
completes half of its cycle during each period of rotation.
This is consistent with alternans as classically defined, in
which the action potential duration alternates from beat to
beat.

3. The numerical method

To solve Eq.(5) for the steady state and Eq.(8) for the
eigenmodes, we use to a large extent the numerical approach
presented by Henry and Hakim[40,41], which will be briefly
described here. More details can be found in Appendix B.
The MATLAB software package(Mathworks, Inc.) is used to
perform all computations.

The steady state is found using the Newton-Raphson
method applied to the discretized version of Eq.(5). We first
find the steady state of a stable spiral wave having a circular
core obtained with a reduced value for the conductance as-
sociated with the fast inward(sodium) current sgfi

=1.4 mS/cm2d compared to the “standard” case. Once the
steady state is found for a stably rotating wave,gfi was step-
wise increased with the new steady state being calculated at
each step. The steady state obtained for the previous value of
gfi was used as the initial guess in the Newton-Raphson al-
gorithm for each new value ofgfi. This procedure was per-
formed up to sodium conductance values for which the spiral
wave breaks up.

Once the steady states are found, we extract the dominant
perturbation eigenmodes of the discretized version of Eq(7).
This is accomplished by extracting an approximation to the

subspace spanned by, say, the 100 most dominant eigen-
modes with the 100 largest growth rates using a modified
version of the Arnoldi method[69]. Once this subspace is
obtained, we can easily extract an approximation to the 100
dominant eigenvalues and corresponding eigenvectors.
Those modes are defined as the right eigenmodes of the sys-
tem in contrast to the left eigenmodes which will be defined
in Sec. III A.

Discretization is accomplished through the use of a polar
grid composed ofNr =100 grid points in the radial direction
andNu=606 points in the azimuthal direction, with a single
extra grid point in the center of the grid. We defineN=1
+NrNu, the total number of grid points, andu
;fu1,u2, . . . ,uN,v1. . . ,vN,w1, . . . ,wNgT, whereui, vi, andwi

correspond to the variablesu, v andw associated with theith
cell on the polar grid, totaling 3N=3+331003606
<180 000 variables. When there is no ambiguity, we have
found it convenient to use the same notationu for both the
spatially discrete and continuous vector representation of the
state variables. The grid spacings in the radial and azimuthal
directions were chosen to beDr =0.03 cm andDu=2p /606,
resulting in a disk-shaped patch of radius 3 cm. The grid
spacings are thus substantially smaller than the resting space
constant,ÎD /g<1 mm, as required for numerical accuracy.
(Hereg is the total ion channel conductance at rest.)

B. Results

The appropriateness of our choice of parameters for the
3V-SIM was verified by running several simulations of spiral
waves and their breakup for different values ofgfi using the
numerical method described in the Methods section. A typi-
cal spiral wave and its breakup is shown in Fig. 1 forgfi
=1.75 mS/cm2. To study breakup, we perturbed a steady
state spiral wave by adding spatially random noise(of 0.001
amplitude) at timet=0 to the membrane voltage component.
This noise was introduced to hasten the onset of breakup
which would have appeared anyway, due to the presence of
small amplitude perturbations resulting from numerical and
roundoff errors, but only after a much longer period of time.
Note that, as intended, the spiral wave does not noticeably
meander, and that breakup occurs due to increasing oscilla-
tions in the spiral width, consistent with spiral wave altern-
ans. The spiral almost breaks up at 225 ms before going
through another alternans cycle to eventually break at around
450 ms.

When linear perturbation theory was applied to the par-
ticular simulation case described above for a fast inward con-
ductance ofgfi =1.75 mS/cm2, we found a number of modes
of interest among the 100 largest eigenmodes(i.e., those with
the largest growth rates). We found the usual translational
(eigenvalues close to ±iV) and rotational modes(zero eigen-
value) which do not reveal any important dynamics of the
perturbations. These modes are a reflection of the fact that
the rotated and translated versions of the steady state are
themselves steady states. We also found one dominant me-
andering mode, which has been studied extensively in previ-
ous publications[37,39,40]. Apart from these well-known
modes, we found not just one but several alternans modes
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having different degrees of instability and different mode
frequencies. The eigenvalues associated with the 21 largest
eigenmodes are shown in Fig. 2. Note that the alternans
modes frequencies are approximate half integer multiples of
the rotation frequencyV (i.e., ±V /2, ±3V /2, ±5V /2, etc.)
This is consistent with the frequency of the modes found for
perturbations of action potentials traveling around a ring
[27]. It is also consistent with the alternans nature of these
modes—in alternans, the pattern repeats every two pacing
periods at every point in the lab frame, and repeats with
opposite sign every period. Since any point in the rotating
frame returns to the same point after each rotation of the
wave, the pattern as observed in the rotating frame will also
repeat every two rotations, and have opposite polarity each
rotation. Consequently, the real part of the frequency of these
modes can only be half-integer multiples of the wave rota-
tion frequency.

For simplicity and comparative purposes, we will describe
in detail three typical alternans modes chosen for their dif-
ferences in frequency, spatial structure and/or behavior. The

eigenvalues of these modes are labeled in Fig. 2. The fastest
growing mode, which we will refer to as Alternans Mode 1,
is the one we would normally expect to be the main cause for
breakup in the nonlinear regime. It also has the lowest mode
frequency, being equal toV /2. Other modes of interest will
be referred to as Alternans Modes 2 and 3. These three eigen-
modes have eigenvaluesslR,lId=s1.14V /2p ,0.5Vd,
s0.38V /2p ,3.5Vd, ands−0.39V /2p ,0.5Vd, respectively.

Although the frequency of a mode can give us a clue as to
the type of mode it is, alternans modes can only be rigour-
ously differentiated from other modes, including the mean-
dering mode, by looking at their spatial structures. Figure 3
shows a typical time course for an alternans mode perturba-
tion (Alternans Mode 1), showing its various phases through
one mode period. We plotted the sum of membrane potential
components,aelIt and āelIt of a related pair of alternans
eigenmodes having complex conjugate eigenvaluesl
=slR, ±lId. (Here the overbar designates complex conjuga-
tion.) The perturbation amplitude and width increase as the
perturbation propagates along the spiral wave leading and

FIG. 1. Membrane potentialu and its contours
(white solid line) at different times showing spiral
wave breakup for the case wheregfi

=1.75 mS/cm2. The time related to each frame is
shown in the top left corner. The rotation period
is 131 ms. Increasing alternans amplitude in the
spiral width leads eventually to breakup at time
close to 430 ms. Meandering does not occur, as
evidenced by the circular trajectory of the spiral
tip (black dotted line). The movie related to this
figure can also be found in Ref.[70].
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trailing edges outward from the point of zero curvature near
the spiral wave tip. The sign of the perturbation is the same
on both sides of the steady state spiral wave(shown in red
when positive and blue when negative), which translates into
a widening or narrowing of the perturbed spiral wave width,
as shown by the solid red line contour. The spiral width is
seen to vary between the widthsw+ andw− shown in panels
A and D. These alternations in the action potential width,
together with the fact that they occur over a period of two
rotation periods, is strongly indicative of alternans.

The oscillation pattern of any perturbation modeam, as
shown in Fig. 3 for the dominant mode, can be succinctly
represented by plotting its amplitudeuamu and phasefsamd.
This representation was used to show the spatial structure of
the membrane potential component of the perturbation for
Alternans Modes 1, 2, and 3 and the meandering mode in
Fig. 4.

Note that, for all alternans modes, the red isophase con-
tours run perpendicular to the spiral wave edges, indicating
that the perturbations on the two edges are in phase, which is
typical of alternans. In contrast, for the meandering mode,
the perturbations on the two edges are 180° out of phase, as
shown in panel H. This corresponds to local translational
shifts of the spiral wave relative to its steady state counter-
part, with no significant increase or decrease of the wave
width. We observe this translational motion to be generally
circular as a function of time in the rotating frame. Since the
mode frequencylI (here<1.3 V) is not commensurate with

the wave rotation frequencyV, the result in the lab frame is
a combination of the circular translational motion with the
overall rotation of the spiral wave. This creates the flower
petal like motion of the wave characteristic of spiral wave
meandering. For Alternans Modes 1 and 3, the phases of the
perturbations change rather modestly along the entire length

FIG. 2. Eigenmode map showing the eigenvalueslm corre-
sponding to the most unstable modes forgfi =1.75 mS/cm2. The
frequency of each mode(imaginary part ofl) normalized toV is
plotted versus its growth rate(real part ofl) normalized toV /2p.
The rotational, translational and meandering modes are represented
by circle, square and star symbols respectively. All the other domi-
nant modes, represented by points, are alternans modes. The eigen-
values of the eigenmodes are arranged in complex conjugate pairs,
of which five (excluding the rotational and translational modes) are
unstable with positive growth rates. Note that the frequencies of the
alternans modes are near half-integer multiples ofV. The pairs of
eigenvalues designated as 1, 2, and 3 refer to Alternans Modes 1, 2,
and 3, as discussed in the text.

FIG. 3. (Color) Snapshots of the membrane potential perturba-
tion associated with an alternans eigenmode, and its effect on the
spiral wave. The mode frequency isV /2. The snapshots were taken
1/6th of an eigenmode period apart. The contour of the spiral wave
is shown as a red dashed line for the steady state and as a solid line
after the perturbation has been added. For the purpose of illustra-
tion, the red line contours were drawn using an artificially large
perturbation amplitude(3 times that of the normalized eigenmode).
A positive perturbation(yellow-red) leads to a widening while a
negative perturbation(blue) to a narrowing of the spiral wave
width. The width fluctuates betweenw+ andw−, typical of alternans.
The depolarized region of the spiral wave may be distinguished
from the recovery region because it is always narrower, for the
parameters we use in this study(as illustrated explicitly in Fig. 1).
The movie related to this figure can also be found in Ref.[70].
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of both leading and trailing edges of the spiral wave. On the
other hand, for higher frequency modes, such as Alternans
Mode 2, the perturbation phase rotates through several mul-
tiples of 2p (6p for Mode 3) as one travels outward along
either wave edge. This produces rapid spatial oscillations of
the spiral wave width, as exhibited by the solid black line
perturbed wave outline in panel D for Mode 3. This is typical
of discordant alternans(i.e., alternans that exhibit opposite
polarities in different regions of the tissue[71]). Differences
other than just the mode frequencies exist among the various
alternans modes. Some seem to display larger perturbations
near the spiral tip than others, while in some cases, there are
greater perturbations in the wake of the spiral wave than on
the wavefront. These differences seem to present themselves
more distinctly when comparison was made between modes
belonging to different parabola-shaped sets of points in Fig.
2, rather than among modes of the same set. For instance,
such differences appear when comparing Alternans Mode 3
with either Alternans Mode 1 or Mode 2 in the top panels of
Fig. 4. Perturbations associated with Alternans Mode 3 also
seemed to involve the tip of the spiral wave more than those
of Alternans Modes 1 and 2. These variations in the spatial
structure of the various modes suggest the existence of
physiologically different types of alternans[18,21], for
which further analysis is needed.

It is well known that the dynamics and, in particular, the
propensity for breakup of the spiral wave are highly depen-

dent on the parameter values of the ionic model. As an ex-
ample, to illustrate the dependency of the eigenmodes on the
3V-SIM parameter values, we computed the eigenmodes and
their eigenvalues for various values of the fast inward current
conductancesgfid. The results are shown in Fig. 5, where the
translational, rotational, meandering and dominant alternans
eigenmode eigenvalues are plotted for different values ofgfi.
The trajectories of the eigenvalues are represented by solid
lines asgfi is increased from 1.5 to 3.5 mS/cm2. As the
conductance of the fast inward currentsgfid is increased, so
do the growth rates of all the alternans and meandering
modes.(The translational and rotational growth rates do not
increase—they are theoretically independent ofgfi.) The al-
ternans mode frequencies remain relatively unchanged rela-
tive to V. (The rotational frequencyV does increase, how-
ever, asgfi increases.) The meandering mode seems to drift
toward higher frequencies. The increased instability of the
alternans and meandering modes withgfi is consistent with
the spiral wave’s greater tendency to break up and meander
at high conductance of the fast inward current(sodium cur-
rent) as seen in the simulations and as previously observed
by others[17,18,35]. Finally, we note that the relative posi-
tions of the alternans mode eigenvalues change at highgfi (as
illustrated by the dotted line) leading to the emergence of a
dominant mode with frequency higher thanV /2.

FIG. 4. (Color) Amplitude (top panels) and phase(bottom panels) plots for the Alternans Mode 1slR,lId=s0.14V /2p ,0.5Vd in panels
A and B, Alternans Mode 2s0.38V /2p ,3.5Vd in panels C and D, Alternans Mode 3s−0.39V /2p ,0.5Vd in panels E and F, and the
meandering modes0.68V /2p ,1.33Vd in panels G and H. In the amplitude plots, mode amplitudes are represented by the various colors
appearing in the colorscale to the right, while steady state membrane potential level contours, shown as black dotted lines, reveal the location
of the steadily rotating spiral wave. In the phase plots, the intensity of the color associated with the phases is proportional to the amplitude,
while the color itself represents the mode phase. Outlines of both the steady state and perturbed spiral waves are shown as black dashed and
solid lines, respectively, in the phase plots. For the purpose of illustration, the black line contours were drawn using an artificially large
perturbation amplitude(3 times that of the normalized eigenmode). The red solid line contours in the phase plot are isophase contours plotted
everyp radians. For clarity, these contours are only plotted in and around the depolarized region of the steady state. Movies showing the
phase patterns and amplitude of each mode in a similar manner as in Fig. 3 can also be found in Ref.[70].
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III. CONTROL OF ALTERNANS

We can use knowledge gained through the eigenmode
analysis of spiral wave stability to develop methods for pre-
venting spiral wave breakup. The goal here is to cancel or
stabilize the unstable eigenmode components of perturba-
tions present in the rotating wave. To achieve this goal, we
first show how left eigenvectors can be used to design a
stimulus protocol to cancel any unstable mode. We then
show an example in which alternans can be controlled with
the application of a single, properly chosen stimulus.

A. Method

In the linear regime, any arbitrary perturbation may be
expressed as a linear combination of the eigenvectors, each
of which grows or decays exponentially with its own rate
constant,lm. Thus, for a given perturbationdu, we can
write:

dustd = o
m=1

3N

dumamelmt s10d

where thedum’s are constants.

We can eliminate themth mode component of the pertur-
bation by applying a current pulseI i to theith cell, associated
to theith variable, at some timet0. If the pulse durationDt is
much shorter than the fastest time scale of the membrane
dynamics, the cell membrane potential will be increased or
decreased by a voltage offsetDVi = I iDt / sSicd, wherec is the
membrane capacitance per unit area. This voltage offset may
also be thought of as an added perturbation to the system, so
that it too can be represented in terms of eigenmodes:

f0,0, . . . ,0,DVi,0, . . . ,0gT = o
m=1

3N

smam s11d

where thesm’s are constants.
We can think of this situation schematically as shown in

Fig. 6 where both the preexisting perturbation and the stimu-
lus can be decomposed into themth mode(an unstable alter-
nans mode, in red) and all their other component eigen-
modes, grouped together in one vector(in blue). If the
amplitude of the stimulus is chosen so that itsmth eigen-
mode component is equal and opposite in amplitude to the
mth component, the alternans component we wish to elimi-
nate, as suggested by the length and direction of the red
arrows in Fig. 6, it is clear that this alternans mode will
immediately be suppressed when the stimulus is applied, ef-
fectively eliminating the corresponding instability. Compar-
ing Eq. (10) at time t0 to Eq. (11), we see that, mathemati-
cally, the stimulus amplitude should be chosen so that,sm
=−dumelmt0.

The required stimulus amplitude can be calculated rigour-
ously by using the left eigenvectors of the system, which are
defined in relation to the inner product in polar coordinates,
k,l given as,

kz1,z2l ; o
i=1

3N

z1
i z2

i Si s12d

for any two vectorsz1 andz2.

FIG. 5. (Color online) Eigenmode map showing the dominant
eigenvaluel for each(approximate) half-integer mode frequency
for several values ofgfi (1.5, 1.6, 1.75, 2, 2.5, 3, and 3.5 mS/cm2).
Only positive half-integer frequency eigenvalues are shown for sim-
plicity. (The negative frequency eigenvalues are a mirror-image.)
The mode frequenciessImsld /Vd are plotted versus the mode
growth rates2p Resld /Vd. The eigenvalues associated with the ro-
tational, translational, meandering and alternans modes are shown
as circles, squares, crosses, and points, respectively. A black line is
drawn through the dominant alternans modes of each half-integer
frequency. Additionally, a blue line(smaller dots) is drawn through
the next lower dominant mode for theV /2 frequency alternans
mode(corresponding to the Alternans Mode 3). The red line with
crosses shows the motion of the meandering eigenvalues, while the
red line with squares indicates the behavior of thetranslational ei-
genvalue. Note that, for larger conductancesgfi, the 3V /2 fre-
quency eigenvalue takes over from theV /2 eigenvalue as the ei-
genvalue for the fastest growing mode.

FIG. 6. (Color online) Any modes(black arrows) can be decom-
posed into components along the alternans mode to be suppressed
(red vectors) and other modes(blue vectors). In order to suppress
the undesired alternans mode, the stimulus amplitude(lower black
arrow) must be adjusted so that its alternans component(vector in
red) is exactly equal and opposite of that(red) of the perturbation
(top black arrow).
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Any left eigenvectorãm has the nice property of being
perpendicular to all the right eigenvectors of the system ex-
cept its associated right eigenvectoram; i.e., kãn,aml=0 for
nÞm (see Appendix C for more details). We can, therefore,
calculate both coefficientsdum and sm by taking the inner
product ofdust0d and f0,0, . . . ,0 ,DVi ,0 , . . . ,0gT with ãm in
Eqs.(10) and (11). We then obtain:

sm =
kãm,f0,0,¯ ,0,DVi,0,¯ ,0gTl

kãm,aml
=

ãm
i DViSi

kãm,aml
s13d

and

− dumelmt0 = −
kãm,dust0dl

kãm,aml
s14d

which, by settingsm=−dumelmt0 yields,

DViSiãm
i = − kãm,dust0dl s15d

which may also be expressed as,

I iDt = −
ckãm,dus0dl

ãm
i elmt0 s16d

showing the explicit dependence of the required chargeI iDt
on t0. Since the charge must be real, Eq.(16) imposes a
condition on the timing(associated with the phase) as well as
the amount of charge. Specifically, for a positive charge, we
require that,

t0 =
p − fsãm

i d − f„kãm,dus0dl…
Imslmd

s17d

and

I iDt = cU kãm,dul
ãm

i UeReslmdt0 s18d

wherefsxd, uxu, Resxd and Imsxd stand for the angle, ampli-
tude, real part and imaginary part of the complex numberx.
Analogous expressions hold for a negative stimulus charge.
Note that theL2 norm used to normalized the eigenvectors
(cf. Appendix B) and, therefore, the productkãm,dul is in-
dependent of the choice of grid spacing or type of grid used
to first approximation, since the inner product is weighted by
the grid point area(see definition earlier). Consequently,
given the expression of Eq.(18), the amount of charge re-
quired to suppress a particular mode is independent of the
grid cell area and, therefore, the choice of the level of dis-
cretization. On the other hand, the membrane potential offset
DVi necessary to suppress the mode does change with the
grid cell area in which the stimulus is applied. It will be

larger for smaller cells sinceDVi = I iDt / sSicd.
The presence ofãm

i in the denominator of Eq.(18) means
that the amplitude of the left eigenvector as a function of
space can be considered to be a measure of the sensitivity of
the mth eigenmode to modification when a stimulus is ap-
plied to theith cell. Since the choice of an energy efficient
stimulus is important while suppressing a particular mode,
we should generally attempt to apply the stimulus where the
amplitude of the left eigenvector is the largest(and therefore
the amount of charge required is the smallest).

Note finally that the chargeI iDt and timingt0 that cancel
a certain eigenmode also eliminate the corresponding com-
plex conjugate eigenmode. This can be easily seen by taking
the complex conjugate of Eq.(15). Since both the perturba-
tion, dust0d, and the voltage offset resulting from stimula-
tion, DVi, must be real, this yields exactly the relationship
that must be satisfied to eliminate the complex conjugate
eigenmode for these same values ofdust0d and DVi (and,
therefore,I iDt and t0).

B. Results

When the sensitivities of Alternans Modes 1, 2, and 3 and
the meandering mode, as measured by the left eigenvectors,
are plotted as functions of space, we obtain the diagrams
shown in Fig. 7. One can see that, in all cases, the stimulus
should be applied in the recovery region(i.e., in the region
outside the spiral wave), where the left eigenvector ampli-
tudes are the largest. For Alternans Modes 1 and 3 and the
meandering mode, the sensitivity to a stimulus is greatest
close to the center of rotation, while for Alternans Mode 2 it
is greatest some distance from the center.

We have seen that a simple stimulus applied at the proper
time and with proper amplitude in a single cell can eliminate
any conjugate pair eigenmodes even though these modes
have significant amplitude throughout the tissue. Thus, in
theory, we would, therefore, need five stimuli to eliminate all
five pairs of unstable modes for the case ofgfi
=1.75 mS/cm2. The development of an appropriate algo-
rithm turns out to be somewhat tricky, so we settle here for a
demonstration wherein a single stimulus cancels all five un-
stable pairs of modes in a specially chosen perturbation. To
do this, we simply choose the valuesdum for all the unstable
modes equal to −sm for a given stimulus strength and timing.
The stimulus was applied at a single grid point where the
amplitudes of the left eigenmodes associated with the five
unstable modes are generally the largest—that is, close to the
center of rotation. This stimulus was generated by artificially
increasing or decreasing the membrane voltage of the chosen

FIG. 7. Amplitudes of the left
eigenvectors corresponding to Al-
ternans Modes 1, 2, and 3(panels
A, B, and C) and the meandering
mode(panel D). Level membrane
potential curves of the steady state
are shown as contours.
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grid point, during one timestep, by the corresponding value
of DV as defined by Eq.(15).

The results for this specially designed case are shown in
Fig. 8. The specially chosen perturbation was first introduced
at time t=0. For the controlled case, the calculated stimulus
was applied att=10 ms, within the small circle seen in panel
E. At t=12 ms in panel E, evidence of the stimulus current
diffusing to neighboring cells appears in the form of a blue
coloration. For the uncontrolled case, the perturbation
reaches amplitudes that would be large enough to produce
breakup if nonlinear dynamics had been included, as sug-
gested by the black contours in panel D. Note that we chose
a large initial perturbation amplitude for the purpose of illus-
tration (on the order of 0.2 for the membrane potential). The
behavior we see for the uncontrolled case is mainly caused
by the alternans mode, as suggested by the widening of the
spiral wave width in panel C, one rotation period prior to the
narrowing of the width in panel D. In contrast, in the con-
trolled case, the perturbation amplitudes remain small during
at least four complete rotations of the spiral wave.

The effect of the stimulus is further clarified by consider-
ing the behavior of the individual modes, as shown in Fig. 9.
In this plot, the component amplitudesdum of selected un-
stable and stable modes that comprise the perturbation were
calculated and plotted as functions of time. As expected,
when no stimulus is applied, the stable mode amplitudes de-
crease while the unstable modes grow exponentially. The
same is true of the controlled case, except that, when the
stimulus is applied att=10 ms, the unstable mode ampli-
tudes are drastically reduced by two orders of magnitude, as
clearly seen in panel B. Note that the unstable modes were
not completely eliminated due to the presence of perturba-
tions introduced by round-off and numerical errors. Never-

theless, it took 5 spiral wave rotations for the amplitudes of
these modes returned to their initial values. In contrast, some
of the stable mode amplitudes increased quite significantly,
by two orders of magnitude when the stimulus was applied,
although the resultant amplitudes were still smaller than the
largest initial perturbation amplitude(about 0.2 times as
large). Some of the modes exhibiting this sudden jump in
amplitude were modes, which, while stable, had relatively
modest damping rates.

IV. DISCUSSION

Using the linear perturbation method, we were able to
extract the various modes and in particular alternans modes
involved in the spiral wave dynamics. We find that, due to
the 2D nature of spiral waves, the alternans modes have ad-
ditional features compared to alternans in the single cell,
which are characterized principally by a long-short-long-
short alternation in action potential duration. In particular,
we do not have one but instead several alternans modes hav-
ing very distinct characteristics. The alternans mode frequen-
cies are half integer multiples of the fundamental spiral wave
rotation frequencysVd. Interestingly, if one plots the time
course of the membrane potential at a point fixed in the lab
frame for any of the alternans modes, one observes patterns
very similar to those of the single cell alternans mode inde-
pendent of the mode frequency. Instead the higher frequency
modes differentiate themselves from their lower frequency
counterparts through the presence of short wavelength oscil-
lations which are typical of what we refer to as discordant
alternans[16,18,21,71,72].

An important consideration in this analysis is the effect of
the finite system size[21,32,71] and the presence of the

FIG. 8. (Color) Snapshots of the membrane potential perturbation in the lab frame taken at selected times(12, 60, 380, and 510 ms) for
the case where no control stimulus is applied(top subplots) and for the case for which a control stimulus is introduced at timet=10 ms
(bottom subplots). The two cases were initialized with the same, specially chosen perturbation, as described in the text. Level membrane
potential contours are shown in black lines. A small black circle was drawn in each of the lower subplots to designate the region in which
the stimulus was applied. The movie related to this figure can also be found in Ref.[70].
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boundary on the stability and structure of the modes. To ad-
dress this issue, we conducted a brief study in which the
system radius was varied from 1.8 cm to a maximum of
6 cm. We observe that there are indeed some modifications
in mode structure as the system size is varied, although the
overall mode structure remains qualitatively the same. We
find that the alternans modes become more unstable as the
system size is increased. However, the alternans mode fre-
quencies remain nearly constant at values that are half-
integer multiples of the rotation frequency, strongly suggest-
ing that the modes are governed primarily by alternans
dynamics, independent of system size. Clearly, this issue re-
quires further investigation, which we plan for the future.

An examination of the relative amplitudes of the pertur-
bations on the wavefronts and wavebacks of the spiral waves
suggests that two different mechanisms may exist for altern-
ans in spiral waves. For Alternans Mode 3, the perturbation
amplitude is large along the spiral wavefront whereas those
of Alternans Modes 1 or 2 are larger along the waveback(see
Fig. 4). Since the velocity of the wavefront is directly related

to the upstroke dynamics[30], we can reasonably speculate
that, in contrast to Modes 1 and 2, conduction velocity plays
a significant role in the perturbation dynamics associated
with Alternans Mode 3. Despite its known limitations
[9,21,73], restitution theory has been a valuable tool that has
helped improve our understanding of spiral wave dynamics
[9,12,13,21,71]. In particular, it was found that CV disper-
sion can have an important effect on spiral wave breakup
[9,12,16,21,71]. In our case, when the CV and APD restitu-
tion curves(which relate the APD and CV to the preceding
diastolic interval DI) are plotted for a 1D cable composed of
this type of cells, the steep part of the CV restitution curve
occurs at DIs shorter than the value at which the slope of the
APD restitution curve becomes greater than one(not shown).
Since the latter is correlated with spiral wave instability, then
for intermediate DIs, where the APD restitution curve has
slope greater than one but the CV restitution curve is rela-
tively flat, we would expect those modes driven by APD
restitution to be unstable, whereas those dominated by CV
variation to be stable. This is just the case illustrated in Fig.
4; here, Alternans Modes 1 and 2 are driven principally by
steep APD restitution, as suggested by their large waveback
perturbation amplitudes, and are found to be unstable(Fig.
2), whereas Alternans Mode 3 is stable, since it is dominated
by CV variation, as suggested by its large wavefront pertur-
bation amplitude. The situation changes whengfi is in-
creased, since this increases the rotation frequency, which
shortens the steady state DI. In this case, we find that all
three modes now have large wavefront perturbation ampli-
tudes(not shown), suggesting all three are being influenced
by CV variation dynamics. Since the CV restitution curve is
steep for these values of DI, we can infer that, although APD
restitution dynamics are still probably involved, all three are
being driven more unstable by the dynamics of CV variation.
Indeed, all three modes are unstable whengfi is large[e.g.,
gfi =3.5 (Fig. 5)]. Thus, as previously suggested[21], two
mechanisms appear to exist, one dominated by APD restitu-
tion dynamics, and one in which CV and APD restitution
both play significant roles.

Since substantial CV dispersion is necessary to initiate
discordant alternans[71], which occurs at short DI in our
case, it is also not surprising that in our study, higher fre-
quency modes, i.e., discordant alternans, become dominant
at high rotational frequency(see Fig. 5).

The example of control presented in the previous section
introduces an important new approach towards the control of
spiral wave breakup. A study by Echebarriaet al. [53]
showed that, in the context of their stimulus protocol, a
single electrode cannot control alternans beyond a critical
distance from the stimulus site. This would suggest that
stimuli applied at a single location using this protocol might
not be capable of controlling instabilities present in a large
tissue. A similar limitation was found by Rappelet al. [49] in
the control of wave breakup in 2D tissue. In contrast, our
results, although obtained for a specialized case, demonstrate
that a single stimulus applied at one instant in timeis capable
of controlling the amplitude of unstable perturbations over a
large area, hundreds of square space constants in size, during
almost five rotation periods of the spiral wave.

As can be seen in panel F of Fig. 8, it appears that, when
the spiral wavefront first passes through the previously

FIG. 9. (Color online) Time course of the amplitudes of selected
eigenmodes for the simulations initialized with the specially chosen
perturbation. Eigenmode amplitudes associated with the controlled
case(stimulus applied att=10 ms) are shown as thick lines; the
uncontrolled case eigenmode amplitudes are plotted as thin lines.
The lower panel shows the first 30 ms of the upper panel in greater
detail. The amplitudes of one of the unstable alternans modes and
two stable modes are shown as solid red and dashed black lines,
respectively, for both the controlled and uncontrolled cases.
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stimulated region, the disturbance is picked up and amplified
by the dynamics of the wavefront, and then propagates along
both edges of the spiral wave(not shown). Such propagation
is possible because the linear perturbation dynamics along
these edges is active and highly unstable. This suggests that
we might be able to improve stimulus protocols for control-
ling spiral wave instabilities by taking advantage of these
active regions of spiral waves, rather than relying solely the
diffusive property of the medium, as has been done previ-
ously [53,74]. One might therefore expect that a very effi-
cient stimulus protocol may be possible, involving a minimal
number of stimuli, that propagate their influence throughout
the spiral wave by “surfing” the wave edges, bringing about
major changes in the overall spatial and temporal dynamics
of the entire wave.

The particular example of control presented in this paper
is an extreme demonstration of the potential of the method,
since the various unstable modes composing the perturbation
were specifically chosen so as to allow their elimination with
a single stimulus. For the more general case, we will prob-
ably need at least half as many stimuli as there are unstable
modes, applied with different amplitudes at different times
and/or different locations. Mathematically, this is explained
by the necessity of satisfying as many conditions, as ex-
pressed in Eq.(15), as there are modes to be eliminated. This
leads to solving a set of coupled equations with the timing
and amplitudes of the stimuli being the unknowns. We have
a lot of freedom in choosing the locations and the timing of
the stimuli. Choosing the proper, most efficient and most
practical control protocol may require the use of an optimi-
zation scheme, employing concepts and tools from control
theory and a deeper understanding of the physiology and
dynamics of the spiral wave alternans than can be obtained
using perturbation theory by itself. This is beyond the scope
of this paper and will be the focus of future studies. The
main purpose here is rather to demonstrate the potential of
perturbation theory, and to introduce new concepts discov-
ered through its use in identifying active properties of the
spiral wave as a whole, to control spiral wave breakup effi-
ciently.

A number of limitations of our approach must be stated.
First the 3V-SIM, does not reproduce properly some of the
detailed ionic processes, and the action potential shape of
more advanced ionic models, which have been shown to
have noticeable effects on spiral wave stability[9,19,75].
Thus particular caution must be exercised when drawing
conclusions on the electrophysiological characteristics of the
various modes and their role in spiral wave stability when
using 3V-SIM. Most importantly, perturbation theory, as
used here, is limited to the study of linear behavior, and is
therefore theoretically only valid for small perturbations.
However insights obtained using the analogous method,
when applied to the study and control alternans in single
cells, have been shown to have application in both the linear
and nonlinear regimes, and thereby have produced very
promising results[68]. There is, of course, a long way to go
before the method can be useful in practical application. The
control schemes suggested here presuppose knowledge of
each eigenmode composing the perturbation, which is not
possible to obtain in practice. The method also assumes that

the transition from tachycardia to fibrillation occurs
smoothly and in an idealized rotating spiral wave, with a
well defined center of rotation, initial conditions close to the
steady state, in a homogeneous and isotropic tissue in two
dimensions.

However despite all the limitations inherent to the theo-
retical approach of the study, we believe that linear perturba-
tion theory will shed new light on the problem. A wealth of
information can be extracted from the eigenvalue map and
the eigenvectors structure. Future work will concentrate on
exploiting this information to further study the physiological
mechanism underlying alternans and spiral wave breakup, its
possible relation to restitution theory, the effect of wavefront
curvature, etc. We will pay particular attention to the ex-
trapolation of results derived from the method(which are
theoretically only valid for small perturbations) to the non-
linear regime. Studies employing perturbation theory could
also be performed for more physiologically relevant sets of
parameters of the 3V-SIM model(i.e., those that reproduce
certain properties of the LRd, Beeler-Reuter, or other ionic
models, etc.) than those used in this paper. Perturbation
theory could also be applied to more advanced models.

This new approach may lead to new and useful concepts
and properties of spiral waves that will also help in the de-
sign of practical electrical stimuli protocols or drug thera-
pies. Our results suggest, for example, that stimuli should be
applied in the resting state and close to the core for optimal
efficiency. Our studies also suggest that a single or a few
localized stimuli at one instant in time can control the alter-
nans at distances much greater than the space constant. The
characteristic frequencies and general spatial structure of the
alternans modes we have found may also lead to new strat-
egies for the design of control protocols that use modulated
continuous stimuli at defined frequencies.

ACKNOWLEDGMENTS

This work was supported by the Whitaker Development
Award (3426162). We are grateful to V. Hakim, H. Henry, D.
Christini, D. Gauthier, and A. Karma for valuable discus-
sions. Many of these occurred at the Workshop for Biologi-
cal Excitable Media, at the Aspen Center for Physics, Aspen,
CO, August 26 to September 8, 2002.

APPENDIX A: MODIFICATIONS TO THE 3V-SIM
FENTON-KARMA MODEL

We found it necessary to make modifications to the 3V-
SIM Fenton-Karma equations, so that they could be used
with the Newton-Raphson method. The latter, which was em-
ployed in finding the steady state spiral wave, generally re-
quires differentiable functions for convergence. We therefore
replaced the Heaviside functions in the original equations
with sigmoidal functions defined asSsud=s1+tanhskuudd /2,
whereku was set to 50. The notations used are the same as
those used in Ref.[21]. Thus,u, v andw represent the mem-
brane potential, and the fast inward and slow inward inacti-
vation gates, respectively. The total ionic current is com-
posed of the sum of three different ionic currents: the fast
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inward sI fid, the slow outwardsIsod and the slow inwardsIsid
currents. The modified equations of the model are thus:

]tu = ¹ . sD ¹ ud − I fisu,vd − Isosud − Isisu,wd sA1d

; ¹ . sD ¹ ud + Fusu,v,wd sA2d

]tv = Ssuc − ud
s1 − vd
tv

−sud
− Ssu − ucd

v

tv
+ sA3d

;Fvsu,vd sA4d

]tw = Ssuc − ud
s1 − wd

tw
− − Ssu − ucd

w

tw
+ sA5d

;Fwsu,wd sA6d

where the currents are

I fisu,vd = −
v
td

Ssu − ucds1 − udsu − ucd sA7d

Isosud =
u

to
Ssuc − ud +

1

tr
Ssu − ucd sA8d

Isisu,wd = −
w

2tsi
s1 + tanhsksu − ucsiddd sA9d

where

tv
−sud = Ssu − uvdtv2

− + Ssuv − udtv1
− . sA10d

The parameters of the model were also modified. They
were chosen to reduce instabilities caused by meandering
while emphasizing alternans as a primary mechanism for
breakup. The value for the parameters are as follows:gfi
=1.75, tr =33.83, tsi=29, to=12.5, tv

+=7.99, tv2
− =312.5,

tv1
− =9.8, tw

+ =870, tw
− =41, uc=0.13, uv=0.04, ucsi=0.861,k

=10, ku=50, andD=0.002 cm2/ms with td=c/gfi, wherec
the membrane capacitance per unit area is equal to
1 mF/cm2. Note that the definition oftv1

− andtv2
− here and in

Ref. [21] are interchanged compared to the definitions in
Ref. [22]. Time is in units of ms and conductances in
mS/cm2. The membrane potential was normalized to
100 mV. Since the characteristic scale used with the sigmoid
function was relatively short, simulation results using this
model turned out to be very close to those obtained with the
3V-SIM Fenton-Karma model with discontinuous functions.

APPENDIX B: FINDING THE STEADY-STATE AND
EXTRACTING THE DOMINANT EIGENVALUES

1. Finding the steady state

To find the steady state of the discretized version of Eq.
(5), we used to a large extent the numerical approach pre-
sented by Henry and Hakim[40,41].

Using the Newton-Raphson method, we first find the
steady state of a stable spiral wave having a circular core

obtained with a reduced value for the conductance associated
with the fast inward(sodium) currentsgfi =1.4d compared to
the “standard” case. This is done by first creating a spiral
wave in a square system discretized within a rectangular co-
ordinate system, using the time and space discretized version
of Eq. (3). The 9-point diffusion tensor is used to reduce
effects associated with the anisotropy of the rectangular grid.
The time advance is performed using the forward Euler
method. The spiral wave is initiated using cross-field stimu-
lation. Once the center of the core as well as the rotation
frequency are found with reasonable accuracy, we transfer
the spiral wave solution to a polar grid, where it is used as
the initial guess to the Newton-Raphson convergence algo-
rithm. In some cases, prior to transferring the spiral wave,
the wave is allowed to rotate one extra time in a rectangular
system from which cells in the four corners outside the even-
tual boundary of the new circular system are removed. This
is done to lessen the impact of the change in boundary con-
ditions between the two systems.

Given the initial guessu1, we would normally use the
Newton-Raphson convergence method to solve iteratively
the following relation for the 3N components ofuk+1 given
uk (see Sec. II A 3 for the definition ofuk):

Hsukdsuk+1 − ukd = − Gsukd. sB1d

Iteration would continue until convergence to the desired
steady state is obtained. Herek refers to the iteration number
and G is the discretized version ofG as defined in Eq.(4).
The matrixHsud represents the Jacobian ofG with respect to
the components ofu, which is also equivalent to the dis-
cretized version of Eq.(7). The advective term is discretized
in space according to the standard upwind-downwind para-
digm [76] (which is possible, since the direction of advection
is fixed by the rotation direction), while we use the usual
second order finite differencing for the diffusion term. Mat-
lab’s standard matrix solver for sparse matrix equations is
used to solve Eq.(B1) for uk+1.

Note, however, that there are actually 3N+1 unknowns in
these 3N equations, since the rotation frequencyV is also
unknown. Thus, we must modify the iterative equation(B1)
to take this into account. Fortunately, due to the rotational
symmetry of the problem, any solution that is rotated around
the center point by any angle is also a steady state which
results in an infinite number of solutions. We are, therefore,
free to remove this ambiguity by fixing the membrane poten-
tial of one cell, reducing the number of unknowns back to
3N. By choosing this value equal to 0.5, a value that typi-
cally occurs in the leading edge of the spiral wave, the solu-
tion with leading edge passing through this point will be
found. We have found that this “anchoring” point is best
chosen about two-thirds of the distance from the center, close
to the location of the leading edge of the initial guess. Thus,
the actual Jacobian matrix used in place ofH in Eq. (B1) is
the one obtained by assuming the independent variables are:
V, and all the components ofu except the membrane poten-
tial at the anchor point. This results in changes to one column
in the matrixH as defined above. The functionG in Eq. (B1)
does not change.
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With a properly chosen initial guess, the steady state spi-
ral wave was obtained in less than 10 iterations to a precision
of 10−10 as measured using theL2 norm ofGsu0d, iGsu0di. In
polar coordinates, theL2 norm, iui, of u, is defined as
Îoi=1

3N uuiu2Si, whereui refers to theith element ofu andSi to
the area of the cell associated with theith grid point (Si

;psDr /2d2 for the central node andSi ; r iDrDu otherwise).
Once the steady state is found forgfi =1.4 for a stably

rotating wave,gfi was stepwise increased with the new
steady state being calculated at each step. The steady state
obtained for the previous value ofgfi was used as the initial
guess for each new value ofgfi. This procedure was per-
formed up to sodium conductance values for which the spiral
wave breaks up.

2. Extracting the eigenvalues

The next step of the method consists of finding the eigen-
values ofH evaluated for the steady stateu0. Determination
of the dominant eigenmodes(i.e., those eigenmodes with the
largest growth rates, or largest real part of the eigenvalues) is
not a simple task, due to the immense size of the matrixH
(3N by 3N, or about 180 000 by 180 000). To handle this
problem, we use a method presented by Henry and Hakim
[40,41]. The idea is to use the Arnoldi method[69] to build
an approximation to the subspaceEs spanned by theNs most
dominant eigenmodes. The eigenvalues and eigenvectors of
interest are then easily obtained by projectingH onto this
approximation of the subspaceEs. Let us consider the
method in more detail.

In this section, we will defineKNs
sH ,ud, the Krylov space

of dimensionNs defined by the matrixH and the vectoru, as
being spansu ,Hu ,H2u , . . . ,HNsud. It can be shown that a
large enough Krylov subspace of any matrixH can yield the
dominant eigenmodes ofH with great accuracy. To obtain
these eigenmodes, we create an orthogonal basissXdNs
;sXmdm=1,. . .,Ns

for the subspaceKNs
seHt1,X1d using the Ar-

noldi method, wheret1 is a suitably chosen real constant.
Note thateHt1 andH have the same eigenvectors while, iflm
are the eigenvalues ofH, the eigenvalues ofeHt1 are simply
elmt1. By using the matrixeHt1 rather thanH itself in the
Arnoldi method[69], we can more easily eliminate the con-
tribution of the more heavily damped modes and obtain an
accurate approximation of the subspaceEs using a relatively
low dimensional Krylov subspace.

We obtain an orthonormal basis using the Arnoldi method
as follows. Having the firstj orthonormalized vectors of the
basissXd j ;sXmdm=1,. . .,j, we construct the next vectorX j+1 by
first calculatingYj =eHt1X j, and then orthonormalizing it with
respect to the rest of the basis by defining:

X j+1 =
Yj − oi=1

j
kYj,XilXi

iYj − oi=1

j
kYj,XilXii

. sB2d

The first vectorX1 is obtained using a random initial con-
dition X0 and calculatingX1=eHt0X0. This first operation en-
sures that we are eliminating all unwanted, heavily damped
eigenmodes. Similarly, the orthonormalization of the basis

performed at each step of the Arnoldi method minimizes the
increasing contribution of the most dominant modes ofEs
coming from repeated applications of the operatorH. The
less dominant modes ofEs and thereforeEs itself can then be
obtained with greater accuracy.

Once the orthonormalized basissXdNs
is obtained, we cal-

culate the matrixP, defined as the projection ofeHt1 onto
KNs

seHt1,X1d. The elements of the matrixP come from the
various combinations ofksYdNs

,sXdNs
l where the vectors

sYdNs
as defined earlier, were obtained during the Arnoldi

process. The eigenvalues ofP are justelmt1 where thelm are
the eigenvalues of the projection ofH onto KNs

sH ,X1d.
Theselm are approximations(albeit very good ones) to the
leading eigenvalues ofH. SinceP is of dimensionNs3Ns
with Ns typically chosen much smaller than 3N (on the order
of 100), its eigenvalues can be easily calculated using con-
ventional methods. SinceH and eHt1 have the same eigen-
vectors, so do their projections onto the subspace
KNs

seHt1,X1d. The eigenvectorsam associated withlm can
then be obtained from the eigenvectors associated withP
denotedbm by transferring the eigenvectorsbm from the
sXdNs

basis onto the original basis ofH. Explicitly, am

=Qbm, whereQ is a 3N3Ns matrix whose columns are filled
with the vectorsXm.

The accuracy of the method depends on the choice oft0,
t1, the size of the subspace and the timestep. Typically we
used a space of dimensionNs=100, a time durationt0
=20 ms andt1=10 ms. The operatoreHt1 is approximated by
integrating,]tdu=DsGsu0dddu [Eq. (6)], for time duration
t1 using the simulation method described in Sec. II A 1. The
advection term is handled using a standard upwind-
downwind method. The timestep was chosen to be 0.001 ms
to obtain the first vector of the basissXdNs

and 0.01 ms for all
the other vectors. A smaller value of timestep was necessary
for the first vector in order to have enough iterations to allow
the high spatial discontinuity inu, v, andw associated with
the random nature of the initial condition to dissipate. This
was increasingly important toward the center, due to the very
fine grid size used in the azimuthal direction. Using these
parameters values, we were able to obtain an accuracy of
isHam−lmamd /lmi,10−8 for the first 10 and,10−4 for the
next 5 eigenmodes. This resulted in less than 1% error for the
value maxsuHam−lmamud /maxsulmamud for the 10 first eigen-
modes. Note that the eigenvectors are all normalized to 1
using theL2 norm.

APPENDIX C: LEFT EIGENVECTORS AND ADJOINT
OPERATOR

The left eigenvectors are defined to be the eigenvectors of
the adjoint of the matrixH as defined in Appendix B. The
adjoint of H, H†, is defined relative to the inner product in
polar coordinates,k,l given by Eq.(12). In this appendix, we
show how to obtain the left eigenvectors and we describe
useful properties they have with respect to the right eigen-
vectors.

Let us define a diagonal matrixS for which each element
Sii of the diagonal is equal to the surface of the grid element
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associated with theith variable. We therefore have thatSii

=r iDrDu (Dr andDu are the grid spacing inr direction and
angle step in azimuthal direction), except at the center where
Sii =pDr2/4. For convenience, we will defineSi ;Sii .

The inner product in polar coordinates as defined by Eq.
(12) between the vectorsx and y may then be written as,
kx ,yl=x* · sSyd=sx* S* d ·y=oi=1

3Nx̄iyiSi, where * refers to the
conjugate transpose operatorsx* ; x̄Td. Defining H† to be
the adjoint matrix associated with this inner product, we then
have, by definition:

ky,Hxl ; kH†y,xl sC1d

=y * · sSHxd sC2d

=y * · sSHS−1Sxd sC3d

=sy * ssS−1d * H * S* d * d ·Sx sC4d

=sS−1H * Syd * · Sx. sC5d

However H* is equal to the transpose ofH sH* = HTd
sinceH is real. Consequently, the adjoint ofH is given by:

H† = S−1H * S= S−1HTS sC6d

When solving the eigenvalue problem, we obtain 3N
eigenmodesam and associated eigenvalueslm for H such

that Ham=lmam. Similarly, we have the left eigenvectorsãm
associated withH†. SinceHT and H have the same set of
eigenvalues, so doesS−1HTS, since they all have the same
characteristic polynomial. Therefore, from Eq.(C6), we can
infer that H and H† have the same set of eigenvalues(but
different vectors), as expected. For any pair of right and left
eigenvectorsam and ãn, we have:

kãn,Haml = lmkãn,aml sC7d

=kH†ãn,aml sC8d

=lnkãn,aml. sC9d

This implies that eitherln=lm or kãn,aml=0. In other
words, those left eigenvectors with eigenvalues distinct from
lm are each perpendicular to the right eigenvectors associ-
ated withlm. We, therefore, define the left eigenvector and
its associated eigenvaluesãm,lmd to be the left eigenmode
associated with the right eigenmodesam,lmd by assigning
each the same subscriptm.

The left eigenvectors are easily calculated by first finding
the eigenvaluesgm and corresponding right eigenvectorscm
of HT. From Eq.(C6), we then see that the left eigenvectors
may be calculated using the relationãm=S−1cm, while corre-
sponding eigenvalues arelm=gm.
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